

Electromagnetic Flowmeter

all metal design

measuring monitoring analysing

MIM

- For measuring and monitoring of conductive liquids
- Accuracy: $<\pm$ (0,8% of reading +0.5% of full scale)
- Flow and temperature measurement
- Monitoring, transmitter function, dosing
- Bidirectional measuring
- p_{max}: 16 bar; t_{max}: 70 °C
- All metal design: stainless steel
- Connection 1/2", 3/4" and 1"

KOBOLD companies worldwide:

ARGENTINA, AUSTRALIA, AUSTRIA, BELGIUM, BULGARIA, CANADA, CHILE, CHINA, COLOMBIA, CZECHIA, EGYPT, FRANCE, GERMANY, GREAT BRITAIN, HUNGARY, INDIA, INDONESIA, ITALY, MALAYSIA, MEXICO, NETHERLANDS, PERU, POLAND, REPUBLIC OF KOREA, ROMANIA, SINGAPORE, SPAIN, SWITZERLAND, TAIWAN, THAILAND, TUNISIA, TURKEY, USA, VIETNAM

KOBOLD Messring GmbH Nordring 22-24 D-65719 Hofheim/Ts.

+49(0)6192 299-0 +49(0)6192 23398 info.de@kobold.com www.kobold.com

Description

The new flowmeter MIM was developed for measuring and monitoring smaller- and medium-sized flow of conductive liquids in pipes.

The device operates according to the electromagnetic measurement principle. According to Faraday's Law of magnetic induction, a voltage is induced in a conductor moving through a magnetic field. The electrically conductive measuring agent acts as the moved conductor. The voltage induced in the measuring agent is proportional to the flow velocity and is therefore a value for the volumetric flow. The flowing media must have a minimum conductivity. The induced voltage is picked up by two sensing electrodes which are in contact with the measuring agent and sent to the measuring amplifier.

The flow rate will be calculated based on the cross sectional area of the pipe.

The measurement is not depending on the process liquid and its material properties such as density, viscosity and temperature. Two given outputs can be set to be switch, analogue or frequnecy. Also a dosing function can be selected, where output 1 is set as switch NPN/PNP/PP and output 2 is set as control input.

Significant Characteristics

- Stainless steel design
- Flow- and temperature measurement
- Monitoring, dosing and transmitter function
- Dosing function
- Coloured, multi-parameter configurable TFT-display, rotatable in 90° steps
- Bidirectional measuring
- Intuitive setup menu via 4 optical touch keys
- 2 configurable outputs (pulse-/frequency-/alarm- and analogue output)
- Grand and resettable totaliser

Technical Details

Measurement process:electromagneticRange:see order detailsMedia:conductive fluidsMinimum conductivity:≥20 μS/cmMax. medium viscosity:70 mm²/sMax. pressure:16 bar

Accuracy: $<\pm(0.8\% \text{ of reading} + 0.5\% \text{ of full}$

scale)*

Repeat ability: ±0.2% of full scale

Temperature

measurement of media: PT1000,

range -30°C ... 100°C

Response time flow t_{90}

(alarm output/

pulse output): <250 ms

Response time temperature t₉₀

(signal output): <20 s

Mounting position: in all directions In-/outlet: 3xDN/2xDN

Handling: 4 optical touch fields, useable with hand gloves

Housing: stainless steel 1.4404, display screen PMMA

Wetted parts

Connection fitting and

housing: stainless steel 1.4404

Insulation parts: PEEK

Elektrodes: stainless steel 1.4404

Seals: FKM Protection: IP 67

Media temperature: $-20 \,^{\circ}\text{C} \dots + 70 \,^{\circ}\text{C}$ Ambient temperature: $-10 \,^{\circ}\text{C} \dots + 60 \,^{\circ}\text{C}$

Electrical data

Analogue output:

Display:

Supply voltage: $19-30 V_{DC}$, internal power

consumption max. 200 mA TFT display, 128 x 128 pixels,

1.4" display orientation in 90°

steps adjustable

Display repetition rate: 0.5...10 s, adjustable
Pulse output Push-Pull, freely scalea

Push-Pull, freely scaleable, configurable for partial and accumulated totalizer

Frequenzy output Push-Pull, freely scaleable,

2 kHz @ overflow 0min @ FS = 50 Hz 0max @ FS = 1000 Hz

Alarm output: NPN, PNP, Push-Pull,

configurable max. 30 V_{DC} , max. 200 mA short-circuit proof active, 3 wire, 0(4)-20 mA,

max. load 500 Ω or 0-10 V_{DC} ,

 $(R_i = 500 \Omega)$

Control input: low active, passive N/O contact or

active signal U_{high} max. 30 V_{DC}

Electrical connection: plug M12x1, 4-pin

* Under reference conditions: media temperatur: 15 °C...30 °C, 1 cSt, 500

μS/cm, 1 bar

ambience temperature: 15 °C...30 °C

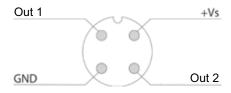
Configuration of Outputs

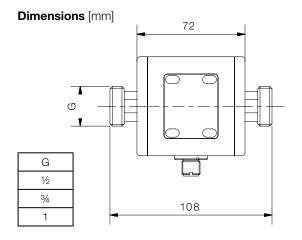
Output 1 (OUT1, PIN 2)	Output 2 (OUT2, PIN 4)
Analogue output 0-10 V _{DC}	Analogue output 0-10 V _{DC}
Analogue output 0(4)-20 mA	Analogue output 0(4)-20 mA
Switching output NPN/PNP/PP	Switching output NPN/PNP/PP
Pulse output PP	Pulse output PP
Frequency output PP	Frequency output PP
Dosing function switch NPN/PNP/PP*	Control input Start/Stop dosing function*

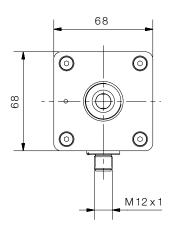
^{*} In preparation

Connection/Ranges

Connection	Inside diameter (DN)	Range	
G ½	5 mm	0.04 10 l/min	
G ¾	10 mm	0.1 25 I/min* / 0.2 50 I/min	
G 1	15 mm	0.250 l/min* / 0.4100 l/min	

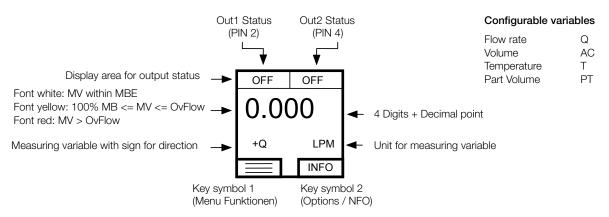

^{*} In preparation

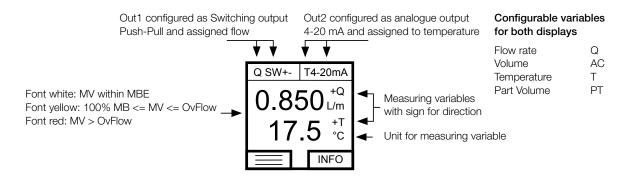

Order Details (Example: MIM-11 01 G4 C3 0 0)

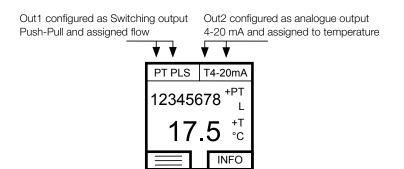

Model	Range	Connection	Electronics	Special version
MIM-12= housing/ electrode VA, FKM seal	05 = 0.04 10 l/min	G4 = G ½ male	C3T = compact, TFT display, 2 outputs (current/voltage/ pulse/frequency/alarm output configurable), M12x1 plug	0 = without Y = special (please specify in writing)
	10 = 0.1 25 l/min*	G5 = G ¾ male		
	15 = 0.2 50 l/min			
	15 = 0.2 50 l/min*	G6 = G 1 male		
	20 = 0.4 100 l/min			

^{*} In preparation

Electrical Connection MIM-...C3







Measuring mode, Display Layout "Single" configurable

Measuring mode, Display Layout "Dual" configurable

